Correction P8

Ex 3:

$$U_{AB} = 4.07V > 0$$

$$W_{AB} = V_{A} - V_{B}$$

$$U_{MOS} = V_{O} - V_{COT}$$
Sons de I par le convertion reguleur
Maginenita : couvert entre en Ø et sort par Court
b) Islem $W_{MT} = 11.8V > 0$

$$W_{MS} = 1.8V > 0$$

Ex 14:
1- Lamper barne consomeration
$$\neq$$
 large à incendercence
Tabés floores cant des subles de physique
From 1 à puissance luminence, il $g = 0$ de pertes thormques
 \Rightarrow consomeration \oplus faible : le pab traduit als en 100W = 20W
2- a) On a: $W = P$. At
 $AN : W_i = 3, 3 \cdot 10^3 J$ [kW] (W)
3- a) On économise firmencien de: $522 \times F$] sur 8000 k de
 $W = -79,5 \in$] sur accondise firmencien de: $522 \times F$] sur 8000 k de
 $W = -79,5 \in$] sur construction , l'économie est $\Delta : 0,03 \notin$
IL fait d'ac $2,13 = 71,4 = 72$ j d'athlisation
 $Ex 17:$
 $I = R = 68 \Omega$ I, $= 0.50 A$
 $P_i = R, I,^{\perp} = AN P_i = 17 W$
 $2- P_2 = 8,3 W$
 $3- DS - I conduction obtaining us , the le puissance cleatrique est
convertie en transfed thermique product Jones J
 $W_{R,2} = 2,4 \cdot 10^5 J$
 $W_{R,2} = 2,4 \cdot 10^5 J$
 $Ex 13: Upp \Rightarrow tenson sinusoidale
 $I = 0$ as: $P = Vp_i$. $I = R \cdot I_{P_i}^{\perp}$
 $Dre: P_i > P_2$ C, a l'iffet jone $R + g^A$.
 $2- 0a =: P = Vp_i$. $I = R \cdot I_{P_i}^{\perp}$$$

$$\frac{E \times 20}{1 - Casserveltion le l'incergie:}$$

$$\frac{R}{R} = \frac{P_{R, inv} + \frac{P_{R, vis}}{P_{R, vis}} + \frac{P_{R, vis}}{P_{R, vis}} = 118W$$

$$\frac{P_{R} + \frac{P_{Rillon}}{P_{Rillon}} = \frac{P_{Rillon}}{P_{Rillon}} = \frac{P_{Rillon}}{P_{Rillon}} = \frac{24W}{P_{Rillon}}$$

$$\frac{P_{R} - \frac{P_{Rillon}}{P_{Rillon}} + \frac{P_{Rillon}}{P_{Rillon}} = \frac{2}{P_{Rillon}} + \frac{2}{P_{Rillon}} = \frac{24W}{P_{Rillon}}$$

$$\frac{1 - \frac{N}{2}}{P_{Rillon}} = \frac{11}{2} + \frac{11}{2} + \frac{2}{2} +$$