T.P. C5: Concentration d'un sérum physiologique

<u>Objectif</u>: Utiliser les connaissances de conductimétrie pour déterminer les concentrations molaire et massique du chlorure de sodium dans un sérum physiologique du commerce notée S.

I .- Travail préliminaire

1) Informations et données

- Le sérum physiologique est une solution aqueuse de chlorure de sodium de concentration massique théorique : $t_{théo} = 9,00 \text{ g.L}^{-1}(\text{valeur donnée à } \pm 5\% \text{ près par le fabricant}).$
- On donne les masses molaires atomiques en g.mol⁻¹ : M (Na) = 23,0 g.mol⁻¹ ; M (Cl) = 35,5 g.mol⁻¹
- On dispose d'une solution mère S_0 de chlorure de sodium de concentration molaire $C_0 = 1,00.10^{-1}$ mol.L⁻¹.
- Remarque : pour déterminer des concentrations en conductimétrie, il est impératif d'utiliser des solutions aqueuses diluées de concentrations < 10 ⁻² mol.L⁻¹.

2) Protocole

- Q.1. : Calculer la concentration molaire théorique C_{théo} du sérum physiologique.
- Q.2.: Quel problème cette valeur pose-t-elle ? Que faire pour pouvoir déterminer cette concentration par conductimétrie ?
- Q.3. : Faire les calculs nécessaires, indiquer le mode opératoire et le matériel nécessaire.
- Q.4. : Rappeler la propriété de la conductimétrie qu'il va falloir utiliser pour déterminer cette concentration.
- Q.5.: Proposer la méthode à suivre pour parvenir à déterminer cette concentration inconnue.

II. - Manipulations

1) Préparation des solutions étalons

Pour réaliser la courbe d'étalonnage, il faut préparer, par dilution de la solution S_0 , les 6 solutions étalons dont les concentrations sont données dans le tableau ci-dessous. Le volume des solutions étalons sera de 100 mL.

- Q.6. : Pour chaque solution étalon calculer le volume V₀ de solution mère à prélever. Compléter le tableau.
- Q.7.: Réaliser chaque dilution, en respectant les consignes vues lors du T.P. C1.
- Q.8. : Après chaque dilution mesurer la conductance de la solution. Commencer les mesures par les solutions les moins concentrées et rincer soigneusement la cellule à l'eau distillée entre chaque mesure.

Solution Si	S_1	S_2	S_3	S_4	S_5	S_6
Concentration (mol.L ⁻¹)	$C_1 = 1,0.10^{-3}$	$C_2 = 3,0.10^{-3}$	$C_3 = 5.0 \cdot 10^{-3}$	$C_4 = 7.0 \cdot 10^{-3}$	$C_5 = 9.0 \cdot 10^{-3}$	$C_6 = 1,0.10^{-2}$
Volume à prélever (mL)						
Conductance (mS)	$G_1 =$	$G_2 =$	$G_3 =$	$G_4 =$	$G_5 =$	$G_6 =$

2) Préparation du sérum

- Q.9. : Réaliser la dilution du sérum suivant le protocole trouvé au I.- 2).
- Q.10. : Mesurer la conductance G' de cette solution.

III.- Exploitation des résultats

- Q.11. : Tracer sur papier millimétré la courbe d'étalonnage G = f(C)
- Q.12. : Déterminer graphiquement la concentration C' du chlorure de sodium dans le sérum dilué.
- Q.13. : En déduire la concentration C du sérum physiologique. Calculer la concentration massique de ce sérum.
- Q.14. : La comparer à la valeur théorique en calculant l'écart relatif. Conclure.