T.P. C6: Une nouvelle unité: la mole

<u>Objectifs :</u> Comprendre la nécessité d'introduire une nouvelle unité de quantité de matière ; trouver la formule permettant de calculer la quantité de matière.

- Q.1. : Calculer la masse d'un atome d'aluminium 27 Al, connaissant la masse d'un nucléon : 1,67 · 10^{-27} kg .
- Q.2. : Calculer le nombre d'atomes d'aluminium contenus dans 1,0 g d'aluminium. Commenter le résultat trouvé.

I.- La mole d'objet

Afin de comprendre à quoi correspond une mole d'atomes, nous allons travailler sur des objets qui sont visibles à l'œil nu. Chaque objet peut être relié analogiquement à un type d'atomes donnés.

1) Mesure de la masse d'un échantillon donné

Vous avez à votre disposition des lentilles, du riz et des haricots et de la semoule.

- E.1.: Compter 20 objets de chaque sorte, puis mesurer leur masse: m_{20L}; m_{20R}; m_{20H}; m_{20S}.
- Q.2. : En déduire par le calcul la masse de 30 objets. Vérifier votre résultat par une pesée. Que remarque-t-on ? Interpréter.

2) Définition de la mole de TP

- C.3.: On définit une mole d'objet par un ensemble de 100 objets.
- Q.4. : Calculer la masse d'une mole de chaque objet : $m_{mole\ L}$; $m_{mole\ R}$; $m_{mole\ H}$; $m_{mole\ S}$.
- E.5. : Placer dans une coupelle une quantité de matière de haricot n_H = 0,1 mol. Expliquer la méthode employée.
- E.6. : Placer dans une coupelle une **quantité de matière de lentille** n_L = 1,5 mol. Expliquer la méthode employée.
- E.7. : Placer dans une coupelle une **quantité de matière de riz** $n_R = 10$ mol? Expliquer la méthode employée.
- Q.8. : **Conclusion** : Pour des petits objets, de faible masse, quelle méthode est la plus pratique pour prélever une certaine quantité de matière d'objet (nombre de mole d'objet)

3) Définition de la masse molaire

La masse molaire M est la masse d'une mole d'objet : elle s'exprime en gramme par mole (g.mol⁻¹).

- Q.1. : Donner la masse molaire de chaque objet : M_L ; M_R ; M_H ; M_S .
- Q.2. : On veut faire cuire une quantité de matière de riz n_R =25 mol. Calculer la masse m_R à peser.
- Q.3.: En déduire la formule générale qui permet de calculer une masse m en fonction de n et M.

Application:

- Q.4. : Calculer le nombre de mol de lentille qu'il y a dans un paquet d'un kilogramme de lentille.
- Q.5. : En déduire le nombre de lentille dans un paquet d'un kilogramme.

II.- La mole d'atomes

Le chimiste a souvent besoin de connaître le nombre d'atomes qu'il y a dans une masse d'un échantillon qu'il a prélevé. Pour l'aider, la masse molaire de tous les atomes a été calculée et figure dans le classification périodique.

Dans les cas des atomes, une mole ne contient pas 100 atomes mais un nombre bien plus important noté N_A , appelé nombre d'Avogadro N_A . Il est égal à $6,02.10^{23}$ mol $^{-1}$.

- $Q.6.: Rechercher \ dans \ la \ classification, \ la \ masse \ molaire \ du \ soufre \ M_S, \ du \ cuivre \ M_{\underline{Cu}}, \ du \ fer \ M_{Fe} \ et \ du \ zinc \ M_{Zn}.$
- Q.7.: Combien a-t-on d'atomes dans deux moles de soufre, deux moles de fer, deux moles de zinc ?
- Q.8. : En déduire la relation entre quantité de matière (mol), nombre d'atomes et N_A.
- Q.9. : On place dans une coupelle 3 g de soufre, 3 g de fer, et 3 g de zinc. Ces trois échantillons contiennent-ils tous le même nombre d'atomes ? Pourquoi ?
- Q.10. : Calculer la quantité de matière de soufre n_S ; de fer n_{Fe} ; et de zinc n_{Zn} que contient chacune des trois coupelles.